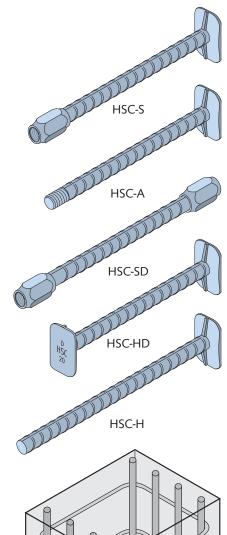

HALFEN HSC STUD CONNECTOR TECHNICAL PRODUCT INFORMATION

General

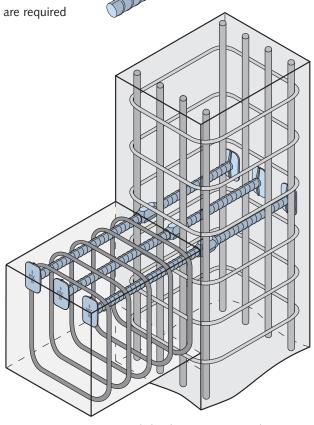
HALFEN HSC Stud Connector

Highly effective reinforcement anchor

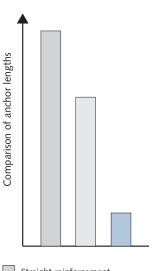

The HALFEN HSC Stud Connector is an officially approved reinforcement anchor, optimised for anchorage in concrete. Full reinforcement anchorage can be achieved with minimum transmission lengths.

The HALFEN HSC Stud connector is especially suitable for use in highly reinforced areas such as corbels and beam to column connections.

The problems that occur in the layout of reinforcement and distribution of forces with conventional rebar solutions do not apply. The amount of reinforcement steel is considerably reduced and the reinforcement layout is simpler. Apart from saving costs and time a substantial advantage is the increased reliabilty of the connection.

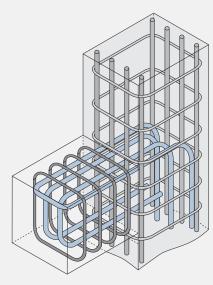

The advantages at a glance

- · innovative anchor head
- reduction of intricate bent reinforcement by using straight anchor bars
- forged anchor head results in extremely short anchorage length
- effective anchorage reduces quantity of reinforcement steel
- time-effective installation and increased application safety thanks to simplified reinforcement
- extensive product range means high design flexibility
- safety in planning with German National Technical Approval, according to European standard Eurocode 2
- screw joints between concreting sections means no cost-intensive formwork penetrations are required

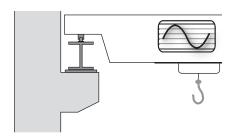

National Technical Approval Z-21.8-1973 for HALFEN HSC Stud connector National Technical Approval Z-1.5-189 for HALFEN HBS-05 Screw connection

Corbel with HALFEN HSC Stud Connector

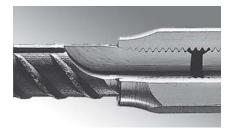
General


Extremely short anchorage lengths

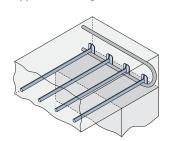
- Straight reinforcement
- Bent reinforcement
- HALFEN HSC Stud connector


Simple reinforcement layout

Corbel with HALFEN HSC Stud connector: secure anchorage, simple reinforcement layout

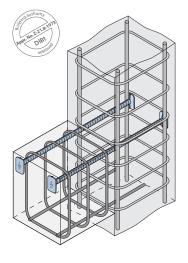

Conventional corbel reinforcement with large bending diameters, high steel usage and complicated reinforcement

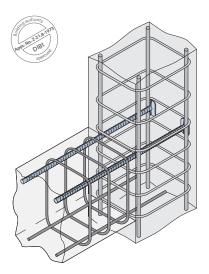
Advantages in planning and design


- approval for predominantly static and non-predominantly static loading cases
- HALFEN provides free easy-to-use corbel dimensioning software
- HALFEN provides a complimentary consultation service for customer's projects
- head to head and multiple-layered placement of anchor heads allow a high degree of reinforcement

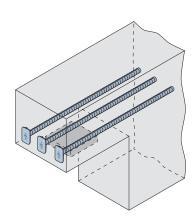
Flexible and economical

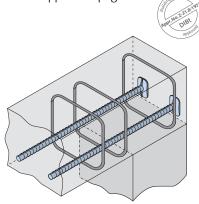
- combination with HALFEN HBS-05 Screw connections provides a wide range of applications
- column and corbel reinforcement stirrups can be positioned separately
- and do not have to span the joint
- fitting with standard size spanners or wrenches
 - no special tools required
- high reliability
- visual monitoring is sufficient
- conical thread minimized screw slippage

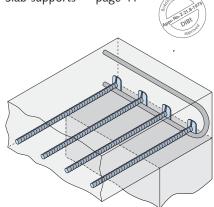

Wide application range

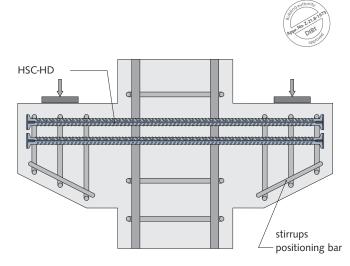

- corbels
- frame corners
- beam supports
- slab supports
- · half joints

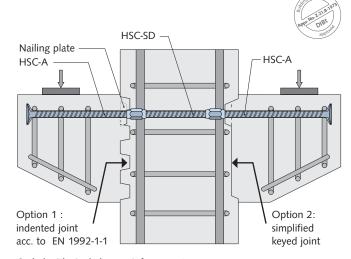
Application Examples


Corbels → page 7 - 10


Frame corners → page 6


Half joints


Beam supports → page 11


Slab supports → page 11

Examples of corbel application

Corbel with multilayer reinforcement in monolithic element → page 16

Corbel with single layer reinforcement used in concrete sections → page 16

Design and Dimensioning, Basics

Application according to approval Z-21.8-1973

Materials

- normal concrete, strength classes C20/25 up to C70/85
- HSC: B500B, for d_{HSC} = 12 mm alternative stainless steel B500NR

Stresses and resistances

- predominantly static and non-predominantly static loads
- yield strength

$$f_{yd} = \frac{f_{yk}}{\gamma_s} = \frac{500 \text{ N/mm}^2}{1.15} = 435 \text{ N/mm}^2$$

Fatigue resistance values of HSC Stud connectors:

- stress ranges for $N=2\cdot 10^6:$ $\Delta\sigma_{RSK}=80\ N/mm^2\ for\ d_{HSC}=12\ mm,$ $d_{HSC}=16\ mm\ and\ d_{HSC}=20\ mm$ $\Delta\sigma_{RSK}=70\ N/mm^2\ for$ $d_{HSC}=25\ mm$
- Wöhlerline stress exponents: $k_1 = 3.5$ for $N \le 2.10^6$ $k_1 = 3$ for $2.10^6 \le N \le 10^7$ $k_2 = 5$

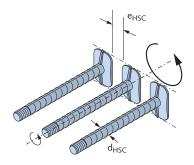
Design concepts and regulations according to the approval

- design and dimensioning of frame end nodes, corbels, beams and slabs
- simplified anchor verification method by observing the construction regulations
- standardized regulations for multilayer HSC reinforcement anchors and for staggered HSC
- shear joints for subsequently cast concrete sections
- conventional positioning of stirrup reinforcement, or alternatively: separate stirrup arrangement in column and corbel

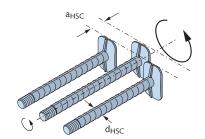
Installation fundamentals

Placement of anchor heads

Anchor heads may be aligned vertically or horizontally as required.

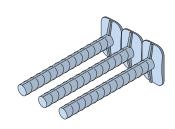

Spacing of bars

HSC anchors require the same bar spacing as standard reinforcement bars.

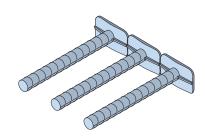

When used in several concrete sections the minimum distances a_{HSC} resp. e_{HSC} must be observed to ensure the male bars can be securely installed. See figures and table below.

Minimum head spacings to ensure male bars can be installed and tightened (HSC connection bars)						
d _{HSC} [mm]	e _{HSC} [mm]	a _{HSC} [mm]				
12	10	15				
16	20	20				
20	20	25				
25	25	30				

Option 1: anchor heads in alignment



Option 2: reduced spacings with staggered anchor head layout



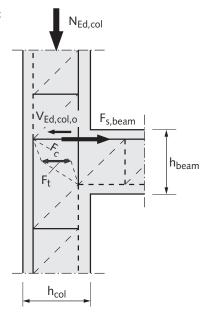
Detailed information on installation can be found in the "HALFEN HSC Stud Connector" assembly instructions.

Vertical anchor head layout

Horizontal anchor head layout

TECHNICAL SUPPORT

HALFEN Technical Support


Engineering services and technical advice for your projects is available.

Contact addresses for all HALFEN Products can be found at the back of this catalogue.

Design and Dimensioning of Frame Corners, Construction Specifications

Frame corner according to approval Z-21.8-1973

Figure 1: Strut and tie model

HALFEN HSC Stud connectors in this application are calculated using the same basic method as for conventional reinforcement. The calculation method is set out in brief below. Always observe the National Technical Approval.

Design and dimensioning of the column

Minimal column dimensions are according to the approval: see table "minimum column dimensions acc. to Z-21.8-1973" on page 7.

Longitudinal reinforcement ratio:

$$\rho_{col} = \frac{A_{s1,col}}{b_{col} \cdot h_{col}} = \frac{A_{s2,col}}{b_{col} \cdot h_{col}} \ge 0.5 \%$$

The sum of longitudinal reinforcement's compressive and tensile forces has to be anchored inside the frame corner joint, relevance for transmission length l_b is:

$$I_b = \frac{|T| + |C_s|}{f_b \cdot n \cdot U} \le h_{beam}$$

where f_b = bond stress acc. to DIN EN 1992-1-1, chapter 8.4.2.

For non-braced frame corner constructions the column reinforcement at the joint cross sections have to be generally increased by $\frac{1}{3}$ compared to the bending dimensioning values. This additional reinforcement has to be anchored starting from the columns cross sections; compare to DAfStb " German Commitee for Structural Concrete" publication no. 532.

Design and dimensioning of the beam

Origin of the beam bending dimensioning is at a distance of 0.3 h_{col} from the column's central axis. The anchor heads have to be positioned behind the longitudinal column reinforcement. Observe the National Technical Approval to verify the anchor.

Stirrup reinforcement

Beam and column have to be reinforced with stirrups in areas defined as h_{col} resp. h_{beam} , measured from the joint cross sections, with a maximum spacing of s = 10 cm. See figure 2 below: "minimal stirrup reinforcement".

Shear resistance

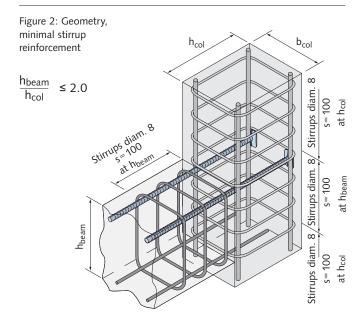
Applied shear force V_{jh}:

$$\begin{aligned} &V_{jh} = A_{s,HSC} \cdot f_{yd} - V_{Ed,col,o} \\ &\text{Limitation of the shear force} \quad V_{jh} \text{ to } V_{jh} \leq \begin{cases} V_{j,Rd} \\ V_{j,Rd,max} \end{cases} \end{aligned}$$

Node resistance V_{i,cd} without stirrups [N]:

$$\begin{split} V_{j,cd} &= 1.55 \cdot \left(1.2 - 0.3 \cdot \frac{h_{beam}}{h_{col}}\right) \cdot \left(1 + \frac{\rho_{col} - 0.5}{7.5}\right) \cdot b_{eff} \cdot h_{col} \cdot \left(\frac{f_{ck}}{\gamma_c}\right)^{\frac{1}{4}} \\ \text{with:} \qquad 1.0 &\leq \frac{h_{beam}}{h_{col}} \leq 2.0 \qquad 0.5\% \leq \rho_{col} \leq 2.0\% \\ b_{eff} &= \frac{b_{beam} + b_{col}}{2} \leq b_{col} \end{split}$$

 b_{eff} , h_{col} ... effective width, height of column cross section in [mm]; f_{ck} in [N/mm²]


Shear resistance V_{i,Rd} with stirrups:

$$V_{j,Rd} = V_{j,cd} + 0.475 \cdot A_{sj,eff} \cdot f_{yd} \le V_{j,Rd,max}$$

with: A_{sj,eff} = effective shear reinforcement (aligned between upper edge joint and upper edge compression zone beam)

Maximum node resistance $V_{j,Rd,max}$:

$$V_{j,Rd,max} = \gamma_{N1} \cdot \gamma_{N2} \cdot 0.3 \frac{f_{ck}}{\gamma_c} \cdot b_{eff} \cdot h_{col} \le 2 \cdot V_{j,cd}$$

Design and Dimensioning of Frame Corners and Corbels, Construction Specifications

with:
$$\gamma_{N1} = 1.5 \cdot \left(1 + 0.8 \cdot \frac{N_{Ed,col}}{A_{c,col} \cdot f_{ck}} \right) \le 1.0$$
$$\gamma_{N2} = 1.9 - 0.6 \cdot \frac{h_{beam}}{h_{col}} \le 1.0$$

Quasi-permanent normal column force

$$N_{Ed,col}$$
 = 1.0 · N_G + 0.3 · $\sum N_Q$

(compression force negative)

Shear joint

The shear joint has to be verified if the column and beam are concreted in two segments \rightarrow page 10.

Minimum	column dimension	s acc. to Z-2	21.8-1973	
Anchor diameter	Concrete strength class		umn ons [mm]	Column longitudinal reinforcement [mm]
d _{HSC} [mm]		b _{col,min}	h _{col,min}	d _{s,col,min}
12	C20/25 - C70/85	240	240	12
16	C20/25 - C70/85	240	240	12
20	C20/25 - C35/45	300	300	16
20	C40/50 - C70/85	240	240	10
	C20/25	300	400	
25	C25/30 - C30/37	300	350	20
	C35/45 - C70/85	300	300	

Corbels according to approval Z-21.8-1973

HALFEN HSC Stud connectors in this application are calculated using the same basic method as for conventional reinforcement. The calculation method is set out in brief below. Always observe the National Technical Approval.

Geometry, actions

short corbels: $a_c / h_c \le 0.5$ long corbels: $0.5 < a_c / h_c < 1.0$

 $V_{Ed} = F_{Ed}$ $H_{Ed} \ge 0.2 \cdot F_{Ed}$

(unless frictional forces resulting from constraint deformation can

not be excluded)

Shear resistance of the corbel

Minimum dimensions of the corbel according to the approval: see table "Constructional Specifications" on page 8.

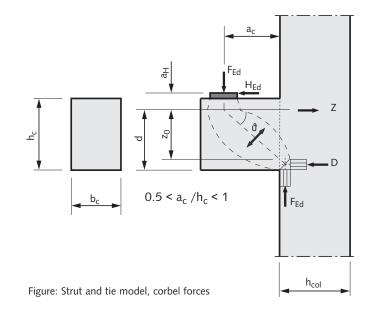
$$V_{Ed} \le V_{Rd,max} = 0.5 \cdot v \cdot b_c \cdot z \cdot \frac{f_{ck}}{\gamma_c}$$

with:
$$v = 0.7 - \frac{f_{ck}}{200 \text{ N/mm}^2} \ge 0.5; z = 0.9 \cdot d$$

Calculation of tensile force

$$Z_{Ed} = F_{Ed} \cdot \frac{a_c}{z_0} + H_{Ed} \cdot \frac{a_H + z_0}{z_0}$$

with:
$$\frac{a_c}{z_0} \ge 0.4$$


$$z_0 = d \cdot \left(1 - 0.4 \cdot \frac{V_{Ed}}{V_{Rd,max}}\right)$$

Verifying the required HSC anchor cross section

$$A_{s,HSC} = \frac{Z_{Ed}}{f_{vd}}$$
 with: $f_{yd} = \frac{f_{yk}}{\gamma_s} = \frac{500 \text{ N/mm}^2}{1.15} = 435 \text{ N/mm}^2$

Proof of HSC anchorage

The HSC bar anchorage is considered verified if the national technical requirements are observed; compare with figures and tables.

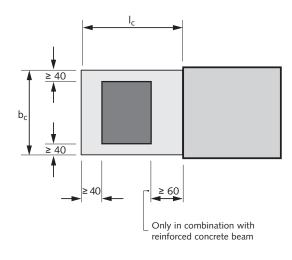
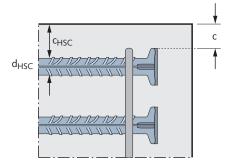


Figure: Bearing plate, top view [mm]

Design and Dimensioning of Corbels, Construction Specifications

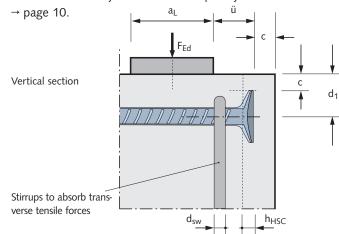

Corbels according to approval Z-21.8-1973

Deviating from the standard layout, HSC can be placed multilayered or staggered, corbel dimensions can also be below minimum given values. In these cases further calculations are required; see approval.

Further verifications and regulations

The transfer of forces to the column in single corbels can be verified using the same design rules as used for frame corners → page 6.

Horizontal cross section: anchor alignment, standard case (single layer, not staggered)

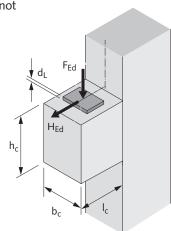


Proof of the compressive stress of concrete on the bearing plate is according to DIN EN 1992-1-1; see approval. Crack width verification is according to DIN EN 1992-1-1.

Stirrup arrangement → page 9.

Transport safety device → page 9.

Proof of the shear joint within subsequently concreted corbels


Constructional specifications												
	A	nchor d	mension	าร	Cor dimer		Concrete strength class	Stirrups	Concrete	cover	Excess length	
	d_{HSC}	f	g	h _{HSC}	b _{c,min}	$I_{c,min}$	[-]	d _{sw}	c _{HSC}	С	ü	
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	F - 1	[mm]	[mm]	[mm]	[mm]	
dHSC	12	30	35	8	200	200	C20/25 C70/85	≥ 6	≥ 30	7		
	16	35	53	10	200	200	C20/25 C70/85	≥ 6	≥ 40	12-1	(c ,	
					300	300	C20/25 C25/30			1992-1	$\int \frac{c}{2} + h_{HSC}$	
	20 44 66	20	4 66	66	12	240	200	C30/37 C35/45	≥ 8	≥ 50	Z	ü ≥ max {
					200	200	C40/50 C70/85			N	$\frac{d_1}{2} + h_{HSC} - \frac{a_L}{2}$	
					300	400	C20/25			to D	•	
g	25	55	83	14	300	350	C25/30 C30/37	≥ 10	≥ 60		(HSC single layer, not staggered)	
8 2 4 1					300	300	C35/45 C70/85			асс.		

Reference	Reference values for corbel resistances						
Anchor diameter	Concrete	Со	Corbel dimensions				
d_{HSC}		b _c	I _c	$h_c (= b_c)$	(≤ V _{Rd,max})		
[mm]	[-]	[mm]	[mm]	[mm]	[kN]		
12	C20/25	200	200	200	119		
12	C30/37	200	200	200	163		
12	C40/50	200	200	200	195		
16	C20/25	200	200	200	117		
16	C30/37	200	200	200	152		
16	C40/50	200	200	200	184		
20	C20/25	300	300	300	279		
20	C30/37	240	200	240	235		
20	C40/50	200	200	200	190		
25	C20/25	300	400	300	273		
25	C30/37	300	350	300	375		
25	C40/50	300	300	300	455		

Note: These are estimated reference values. Individual cases require separate verification.

Assumptions:

- concrete cover c = 20 mm
- single layer reinforcement, not staggered
- predominantly static loads $H_{Ed} = 0.2 F_{Ed}$
- monolithic construction
- bearing plate thickness
 d_L = 20 mm

Design and Dimensioning of Corbels, Construction Specifications

Corbels according to approval Z-21.8-1973

Stirrups for transverse tensile forces

At least one closed vertical stirrup for transverse tensile forces has to be installed inside the load area for each rebar layer. Correct placement is between the middle of the bearing plate and the HSC anchor heads (see figure). Stirrup diameter is according to the table on page 8.

Stirrups for tensile splitting forces

For $a_c \le 0.5 \cdot h_c$ and $V_{Ed} > 0.3 \cdot V_{Rd,max}$:

Option 1:

Closed horizontal or angled stirrups enveloping corbel and column with a total minimum cross section of 50 % of the HSC reinforcement.

Option 2:

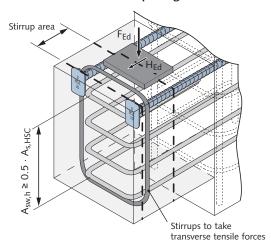
Closed horizontal **and** vertical stirrups inside the corbel, with a minimum overall cross section of 50% of the HSC reinforcement (separate stirrup arrangement).

For $a_c > 0.5 \cdot h_c$ and $V_{Ed} > V_{Rd,c}$ ($V_{Rd,c}$ acc. to DIN EN 1992-1-1, chapter 6.2.2):

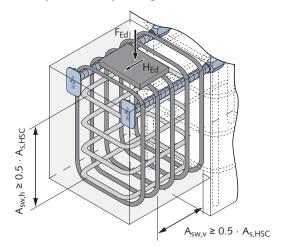
Closed vertical stirrups for total stirrup forces of $F_{wd} = 0.7 \cdot F_{Ed}$

Transport safety device

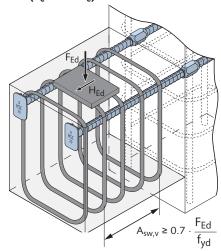
Movement in the joint during transport has to be avoided. A minimum $1.5\,\text{cm}^2/\text{m}$ joint crossing reinforcement in the pressure zone or other methods e.g. securing with tension belts are possible.


TECHNICAL SUPPORT

HALFEN Technical Support


Engineering services and technical advice for your projects is available.

Contact addresses for all HALFEN Products can be found at the back side of this catalogue.


Short corbels $(a_c \le 0.5 h_c)$ Option 1: continuous tensile splitting reinforcement

Short corbels $(a_c \le 0.5 h_c)$ Option 2: separate stirrup arrangement

Long corbels ($a_c > 0.5 h_c$)

Shear Joint Design and Dimensioning

Shear joints according to approval Z-21.8-1973

The shear joint can be configured either as an indented joint or as a "simplified key joint", see illustrations. The distance between the joints must not be smaller than the largest possible size of aggregate in the concrete mix.

Proof of the shear joint

 $V_{Ed} \le V_{Rdj} = c_j \cdot f_{ctd} \cdot b_c \cdot x_j + 1.2 \cdot \mu \cdot A_{sj} \cdot f_{yd} \le V_{Rdj,max}$

with:

 $V_{Rdj,max} = 0.5 \cdot v_j \cdot f_{cd} \cdot b \cdot h_{c,eff}$

 $x_i = h_c$ for indented joint

 $x_j = h_c - u \le 500 \text{ mm}$ for simple key joint without longitudinal tensile force $(H_{Ed} \le 0)$

 $x_j = x_c - u \le 500 \text{ mm}$ for simple key joint with longitudinal tensile force (H_{Ed} > 0)

 $h_{c,eff} = h_c$ for indented joint

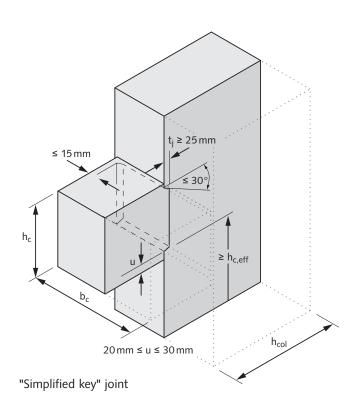
 $h_{c.eff} = h_c - u \le 500 \,\text{mm}$ for simple key joint

 x_c ... height of compression zone ($x_c = (d-z_0) \cdot 2$)

b_c, h_c ... width of the joint, height of the joint

A_{sj} ... overall cross section of the tensile zone reinforcement, crossing the joint at 90 degree


 $c_{j},\;\mu,\;\nu_{j},\;...\;$ joint parameters according to table


f_{cd} ... design value of concrete compressive strength

 $f_{ctd} = f_{ctk;0.05} / \gamma_c$... design value of concrete tensile strength with γ_c = 1.8

Shear joints are usually designed with HSC female bars and HSC-A single headed male bars. For proper installation of the HSC-A bars please refer to the assembly instructions on page 5.

Coefficients of shear joints				
Joint design	c _j	μ	ν _j	
Indented joint	0.5	0.9	0.7	
Simplified key joint	0.4	0.7	0.5	

End Anchorage in Beams and Slabs

Beam supports and slab supports according to approval Z-21.8-1973

Anchorage and load transfer

In addition to the bonding effect of the ribbed rebar the forged heads can also be used to verify the anchorage for the rebar force. Because of the concentrated load transfer additional construction regulations have to be observed. Reinforcement, for example, stirrups have to be positioned to absorb shear tension loads in the anchorage zone. The diameters of these reinforcement elements should not be smaller than the recommended minimum diameters d_{sw}, see table on page 8.

The values in the table for the concrete cover c_{HSC} and the minimum construction dimensions should be observed, see table page 8.

Load transfer for the anchor forces has to be ensured, otherwise additional reinforcement is required.

Always observe the National Technical Approval.

Beams, solid slabs

Considering stress spreading triangular in the bearing area (see adjacent figure) and unstaggered one layer tensile reinforcement, the HSC reinforcement may be deemed as fully anchored, if the anchorage length below is observed:

$$I_b = \frac{2 \cdot V_{Ed}}{\sigma^* \cdot b} + \ddot{u} \ge 6.7 \cdot d_{HSC}$$

with: σ^* = allowable compression at calculated bearing, compare to figure. ü = head overlap

$$\ddot{u} \ge \max \begin{cases} \frac{c}{2} + h_{HSC} \\ \frac{d_1}{2} + h_{HSC} - \frac{4 \cdot V_{Ed}}{3 \cdot \sigma^* \cdot b} \end{cases}$$

h_{HSC} → table page 8

Deviating from the standard layout, HSC can be placed multilayered or staggered, corbel dimensions can also be below minimum given values. In these cases further calculations are required; see approval.

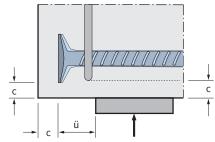
Bearing area of beams:

At least one closed vertical stirrup for each layer of reinforcement.

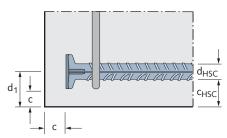
HSC at the anchor head, minimum diameter d_{sw} according to table → page 8

Bearing area of slabs:

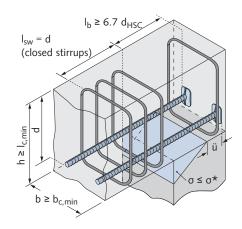
Transverse reinforcement at least 20 % of the tensile moment reinforcement. At the flanking margins u-shaped stirrups with minimum diameter d_{sw} according to the table on page 8.

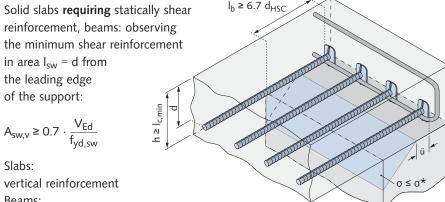

The transverse reinforcement has to be calculated according to DIN EN 1992-1-1, valid for V_{Rd,max}:

$$V_{Rd,max} = 0.5 \cdot v \cdot b \cdot z \cdot \frac{f_{ck}}{\gamma_c}$$


with:
$$v = 0.7 - \frac{f_{ck}}{200 \text{ N/mm}^2} \ge 0.5$$

Solid slabs requiring no statically shear reinforcement:


shear resistance is sufficient also in the load initial area of HSC anchors.


Concrete cover; head extension, vertical section

Concrete cover; horizontal section

Beam support; minimum requirements

Slab support; minimum requirements

Slabs:

vertical reinforcement Beams:

closed vertical stirrups

Calculation Example

Calculation example corbel according to approval Z-21.8-1973

Calculation example:

Proof of concrete compression under the bearing plate

$$A_{c0} = 200 \cdot 200 \, \text{mm}^2 = 40000 \, \text{mm}^2 \, A_{c1} = 253 \cdot 253 \, \text{mm}^2 = 64009 \, \text{mm}^2$$

$$\mathsf{F}_{Rdu} = \mathsf{A}_{c0} \cdot \mathsf{f}_{cd} \cdot \sqrt{\frac{\mathsf{A}_{c1}}{\mathsf{A}_{c0}}} = 40000 \cdot 1.7 \cdot \sqrt{\frac{64009}{40000}} = 860200 \, \mathsf{N} = 860.2 \, \mathsf{kN}$$

$$< 3 \cdot f_{cd} \cdot A_{c0} = 3 \cdot 1.7 \cdot 400 = 2040 \, kN > 34512 \, kN = F_{Ed}$$
 \checkmark

Shear resistance of the corbel

$$V_{Rd,max} = 0.5 \cdot v \cdot b_c \cdot z \cdot \frac{f_{ck}}{\gamma_c} \qquad v = 0.7 - \frac{f_{ck}}{200 \ N/mm^2} = 0.7 - \frac{30}{200} = 0.55 \ge 0.5 \ \checkmark$$

$$z = 0.9 \cdot d = 0.9 \cdot (40.0 - 5.3) = 31.2 cm$$

$$V_{Rd,max} = 0.5 \cdot 0.55 \cdot 40 \cdot 31.2 \cdot \frac{3.0}{1.5} = 687.1 \, kN > V_{Ed} = 345 \, kN$$

HSC reinforcement

$$Z_{Ed} = F_{Ed} \cdot \frac{a_{C}}{z_{0}} + H_{Ed} \cdot \frac{a_{h} + z_{0}}{z_{0}} \qquad z_{0} = d \cdot \left(1 - 0.4 \cdot \frac{V_{Ed}}{V_{Rd,max}}\right) = 34.7 \cdot \left(1 - 0.4 \cdot \frac{345}{687}\right) = 27.7 \text{ cm}$$

$$Z_{Ed} = 345 \cdot 0.632 + 69 \cdot \frac{7.3 + 27.7}{27.7} = 305.2 \text{ kN} \qquad \frac{a_{C}}{z_{0}} = \frac{17.5}{27.7} = 0.632 > 0.4 \checkmark$$

$$A_{s,HSC,req} = \frac{Z_{Ed}}{f_{yd}} = \frac{305.2 \, kN}{43.5 \, kN/cm^2} = 7.02 \, cm^2$$

chosen: 3 diam. 20: $A_{s,HSC,prov} = 9.42 \text{ cm}^2 > 7.02 \text{ cm}^2 = A_{s,HSC,req}$

(single layer layout sufficient)

Crack width proof necessary

Proof of HSC anchorage

(indirectly by observing building regulation)

Minimum corbel dimensions: $b_c/l_c = 40 \text{ cm}/35 \text{ cm} > 24 \text{ cm}/20 \text{ cm} = b_{c,min}/l_{c,min}$

Extension:
$$\ddot{u}_{req} \ge \max \begin{cases} \frac{c}{2} + h_{HSC} = \frac{2.0 \text{ cm}}{2} + 1.2 \text{ cm} = 2.2 \text{ cm} \\ \frac{d_1}{2} + h_{HSC} - \frac{a_L}{2} = \frac{5.3 \text{ cm}}{2} + 1.2 \text{ cm} - \frac{20.0 \text{ cm}}{2} = -6.2 \text{ cm} \end{cases}$$

$$\ddot{u}_{req} = 2.2 \text{ cm} < \ddot{u}_{prov} = 7.5 \text{ cm} - 2.0 \text{ cm} = 5.5 \text{ cm} \checkmark$$

TECHNICAL SUPPORT

HALFEN Technical Support

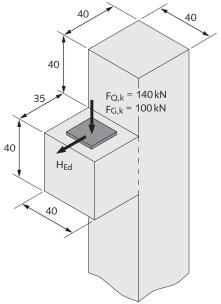
Engineering services and technical support for your individual projects. Contact information can be found at the back side of this catalogue.

Specifications

- column, see figure below
- concrete C30/37
- $-c_{nom} = 20 \, mm$
- column reinforcement: each flank
 4 diam. 20

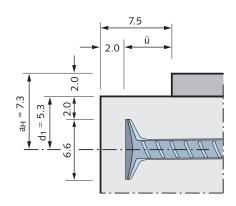
Calculation assumptions

- vertical anchor head placement
- single layer HSC reinforcement,d_{HSC} = 20 mm
- dimensions of the bearing plate: 20.0 / 20.0 / 2.0 cm
- bearing plate centred on corbel

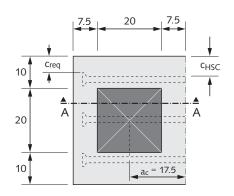

Actions

 $V_{Ed} = 1.35 \cdot 100 \,\text{kN} + 1.5 \cdot 140 \,\text{kN}$

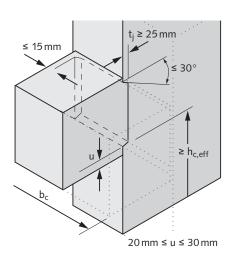
= 345 kN


 $H_{Ed} = 0.20 \cdot 345 \, kN$

= 69 kN (minimum value)



Dimensions in [cm]


Calculation Example Corbel According to Approval Z-21.8-1973

Section A - A [cm]

Corbel view from top [cm]

Simplified key joint; detail from page 10

Concrete cover to the sides of anchors:

$$c_{req} = c_{HSC} - \frac{f - d_{HSC}}{2} = 5.0 \text{ cm} - \frac{4.4 \text{ cm} - 2 \text{ cm}}{2} = 3.8 \text{ cm}$$

→ concrete cover on anchor head sides = 3.8 cm

Minimum column dimensions:

 $b_{col}/h_{col} = 40 \text{ cm}/40 \text{ cm} > 30 \text{ cm}/30 \text{ cm} = b_{col,min}/h_{col,min}$

Column reinforcement diameter: $d_{s,col} = 2.0 \, \text{cm} > 1.6 \, \text{cm} = d_{s,col,min}$

Proof of the shear joint

Assumption: designed as simplified keyed joint

$$V_{Rdj} = c_j \cdot f_{ctd} \cdot b \cdot x_j + 1.2 \cdot \mu \cdot A_{sj} \cdot f_{yd} \le V_{Rdj,max}$$

 $x_j = x_c - u = (d - z_0) \cdot 2 - u$ Assumption: $u = 20 \text{ mm}$
 $x_i = (347 - 277) \cdot 2 - 20 = 120 \text{ mm} < 500 \text{ mm}$

$$V_{Rd,max} = 0.5 \cdot v_{j} \cdot f_{cd} \cdot b \cdot h_{c,eff} = 0.5 \cdot 0.5 \cdot 0.85 \cdot \frac{3.0}{1.5} \cdot 40 \cdot 38 = 646 \, kN$$

$$V_{Rdj} = 0.4 \cdot \frac{2.03}{1.8} \cdot 400 \cdot 120 + 1.2 \cdot 0.7 \cdot 9.42 \cdot 10^{2} \cdot 435 = 365860 \, N = 365.9 \, kN$$

$$< 646 \, kN = V_{Rd,max} \qquad > 345 \, kN = V_{Ed} \checkmark$$

Node resistance

Acting shear force:

$$V_{jh} = A_{s,HSC} \cdot f_{yd} - V_{Ed,col,o} = 9.42 \cdot 43.5 = 409.7 \, kN$$

Node resistance without stirrups:

$$V_{j,cd} = 1.55 \cdot \left(1.2 - 0.3 \cdot \frac{h_{beam}}{h_{col}}\right) \cdot \left(1 + \frac{\rho_{col} - 0.5}{7.5}\right) \cdot b_{eff} \cdot h_{col} \cdot \left(\frac{f_{ck}}{\gamma_c}\right)^{1/4}$$

$$\frac{h_{beam}}{h_{col}} = \frac{40}{40} = 1.0 \ \begin{cases} \ge 1.0 \ \checkmark \\ \le 2.0 \ \checkmark \end{cases} \qquad \qquad \rho_{col} = 0.79\% \ \begin{cases} \ge 0.5\% \ \checkmark \\ \le 2.0\% \ \checkmark \end{cases}$$

$$b_{eff} = \frac{b_{beam} + b_{col}}{2} = \frac{40 + 40}{2} = 40 \text{ cm} \le b_{col} = 40 \text{ cm}$$

$$V_{j,cd} = 1.55 \cdot (1.2 - 0.3 \cdot 1.0) \cdot \left(1 + \frac{0.79 - 0.5}{7.5}\right) \cdot 400 \cdot 400 \cdot \left(\frac{30}{1.5}\right)^{1/4}$$

= 490262 N = 490.3 kN > 409.7 kN = V_{ih} \checkmark → no further stirrups necessary

Maximum node resistance:

$$V_{j,Rd,max} = \gamma_{N1} \cdot \gamma_{N2} \cdot 0.3 \cdot \frac{f_{ck}}{\gamma_c} \cdot b_{eff} \cdot h_{col} \le 2 \cdot V_{j,cd}$$

$$N_{Ed,col} = 1.0 \cdot N_G + 0.3 \cdot \sum N_Q = -100 - 0.3 \cdot 140 = -142 \, kN$$

$$\begin{split} &\gamma_{N1} = 1.5 \cdot \left(1 + 0.8 \cdot \frac{N_{Ed,col}}{A_{c,col} \cdot f_{ck}}\right) \leq 1.0 \quad \gamma_{N1} = 1.5 \cdot \left(1 - 0.8 \cdot \frac{142}{40^2 \cdot 3.0}\right) = 1.46 > 1.0 \\ &\gamma_{N2} = 1.9 - 0.6 \cdot \frac{h_{beam}}{h_{col}} = 1.9 - 0.6 \cdot \frac{40}{40} = 1.3 > 1.0 \end{split}$$

$$n_{col}$$
 40
 $V_{j,Rd,max} = 1.0 \cdot 1.0 \cdot 0.3 \cdot \frac{3.0}{1.5} \cdot 40.0 \cdot 40.0 = 960 \text{ kN} \le 2 \cdot V_{j,cd} = 2 \cdot 490.3 \text{ kN} = 980.6 \text{ kN}$

$$V_{jh} = 409.6 \, kN < 960 \, kN = V_{j,Rd,max}$$

Calculation Example Corbel

Calculation example corbel according to approval Z-21.8-1973

Stirrups for transverse tensile forces

One closed stirrup diam. 8 mm near the anchor heads

Stirrups for tensile splitting forces

Boundary conditions: $V_{Ed} = 345 \, kN > 0.3 \, V_{Rd,max} = 288 \, kN$

$$\frac{a_c}{h_c} = \frac{17.5}{40} = 0.44 < 0.5$$

separate stirrups for column and corbel

$$A_{sw,h,req} = A_{sw,v,req} \ge 0.5 \cdot A_{s,HSC}$$

$$A_{sw,req} = 0.5 \cdot 7.02 \, cm^2 = 3.51 \, cm^2$$

$$A_{sw,h,prov} = A_{sw,v,prov} \ge \pi/4 \cdot 0.8^2 \cdot 4 \cdot 2 = 4.02 \text{ cm}^2$$

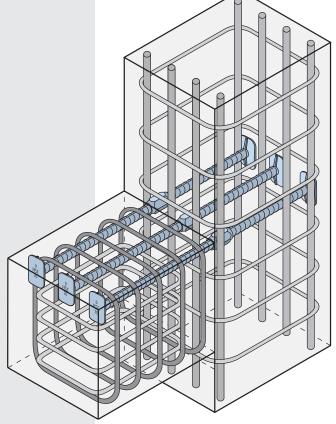
selected: 4 Ø 8 stirrups horizontally and vertically

Secure transport

Secure during transport using suitable cargo tension belts

Design and dimensioning of the column

(as conventional corbel reinforcement)


Longitudinal column reinforcement ratio:

$$\rho_{col} = \frac{A_{s1,col}}{b_{col} \cdot h_{col}} = \frac{A_{s2,col}}{b_{col} \cdot h_{col}} = \frac{\pi \cdot 2.0^2}{40^2} = 0.79\% > 0.5\%$$

Anchorage of longitudinal column reinforcement:

$$I_{b,req} = \frac{\sigma \cdot A_{s,req}}{f_{bd} \cdot \pi \cdot d \cdot n} = \frac{43.5 \cdot 3.60}{0.3 \cdot \pi \cdot 2.0 \cdot 4} = 20.8 \, cm < 38 \, cm = I_{b,prov} \checkmark$$

minimum stirrup reinforcement inside the node: diam. 8 mm, s = 100 mm

Corbel reinforcement with HALFEN HSC Stud Connector according to this calculation example

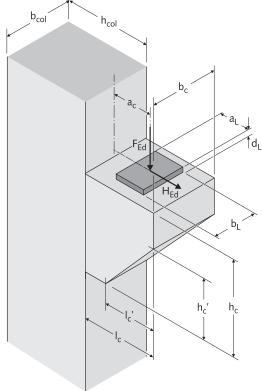
HALFEN offers a free easy-to-use calculation software.

The latest version of the calculation software can be downloaded at www.halfen.com.

System requirements for HALFEN calculation software:

- Windows 7, Windows 8.1, Windows 10
- Microsoft .Net Framework 3.5, SP1 (Windows 10 system requires eventually an installation afterwards)
- Microsoft Excel 2010, 2013 or 2016 local host installed

A DVD containing calculation software, catalogues and approvals is available.



HSC Stud Connector

Data sheet, input values

Organisation/plant _		
Contact person		
Phone	Fax	
E-mail		
Construction project		
Site location		

Item -

	n element dimensi l no. Z-21.8-1973, a	ons according to appendices 3 and 4	[mm]		
Anchor		Minimum constructional dimension			
diam.	Concrete	Column	Corbel		
HSC	strength class	$b_{col,min}/h_{col,min}$	$b_{c,min}/I_{c,min}$		
12	C20/25-C70/85	240/240	200/200		
16	C20/25-C70/85	240/240	200/200		
	C20/25-C25/30	300/300	300/300		
20	C30/37-C35/45	300/300	240/200		
	C40/50-C70/85	240/240	200/200		
	C20/25	300/400	300/400		
25	C25/30-C30/37	300/350	300/350		
	C35/45-C70/85	300/300	300/300		

Please send the completed form to your local HALFEN distributor by fax or by E-Mail. Adresses are listed on the catalogue cover. Trained engineers are available to help you plan with the HALFEN HSC Stud Connector system

Column geometry

Column width	b _{col}	mm
Column depth	h _{col}	mm

Corbel geometry

Corbel width	b _c	mm
Corbel length	I _c	mm
Corbel haunch length	l _c '	mm
Corbel height	h _c	mm
Corbel haunch height	h _c '	mm

Geometry of bearing plate and point of load application

Bearing plate thickness	d_L	mm
Bearing plate width	b _L	mm
Bearing plate length	a _L	mm
Point of load application	a _c	mm

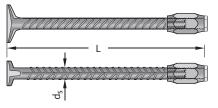
Loads

Vertical load	F _{Ed}	kN
Horizontal load	H _{Ed}	kN

Boundary conditions

Concrete class	С		
Concrete cover	c _{nom}		mm
Monolithic corbel design?		or several concrete steps?	
Unilateral corbel?		or bilateral corbel?	

Column data above the corbel


Vertical load	N _{Ed,col,o}	kN
Horizontal load	V _{Ed,col,o}	kN
Outer column reinforcement	Number	pcs
(longitudinal)	Diam.	mm

Proof of fatigue resistance

Max. vertical force	V _{Ed,max}	kN
Min. vertical force	$V_{Ed,min}$	kN

Product Range, References for Length Calculation

HSC-S Single headed female bars

Material: Concrete steel B500B ② HSC-S standard lengths

Type

Article No.

Article name type bar diam. d _s / L [mm]	L _{min} [mm]	Article No.
HSC - S - 12 /	155	0060.300 ①
HSC - S - 16 /	180	0060.310 ①
HSC - S - 20 /	200	0060.320 ①
HSC - S - 25 /	230	0060.330 ①
① required length, please indicate with	n your order, se	e page bottom.

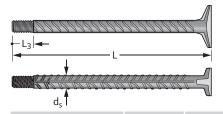
	0060.300-00001	12	360	400	
		0060.300-00002	12	460	500
	HSC-S	0060.310-00001	16	360	400
	H3C-3	0060.310-00002	16	460	500
		0060.320-00001	20	360	400
		0060.320-00002	20	460	500

Diam. d_s

[mm]

Length L

[mm]


For column

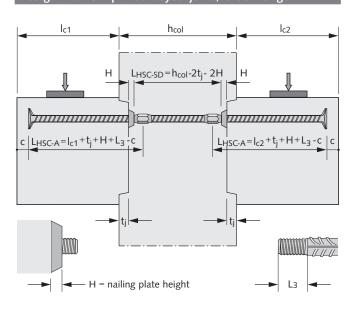
dimensions *)

h_{col} [mm]

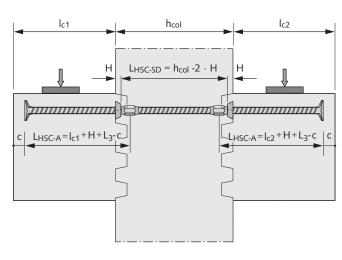
 $^{\star})$ Constructional column requirements and country-specific approvals - if applicable - have to be considered. Applies to concrete cover c_{nom} = 30 mm.

HSC-A Single headed male bars

Material: Concrete steel B500B ②

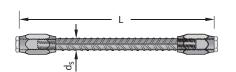

Article name type bar diam. ds/L[mm]	L _{min} [mm]	Screw depth L ₃ [mm]	Article No.		
HSC - A - 12 /	130	16,5	0060.400 ①		
HSC - A - 16 /	150	22,5	0060.410 ①		
HSC - A - 20 /	160	28,5	0060.420 ①		
HSC - A - 25 /	190	36	0060.430 ①		
① please state required length when ordering, see bottom of page.					

^{*)} Constructional column requirements and country-specific approvals (if applicable) have to be considered.


Applies to concrete cover c_{nom} = 30 mm.

HSC-A standard lengths Diam. For corbel Length L Type Article No. d_s extensions *) [mm] [mm] I_c [mm] 0060.400-00001 195 200 0060.400-00002 12 245 250 0060.400-00003 12 295 300 0060.400-00004 12 345 350 0060.400-00005 0060.410-00001 16 202 200 0060.410-00002 252 250 16 HSC-A 0060.410-00003 16 302 300 0060.410-00004 16 352 350 0060.410-00005 16 402 400 0060 420-00001 208 200 20 0060.420-00002 20 250 0060.420-00003 20 308 300 0060.420-00004 20 358 350 0060.420-00005 20 408 400

Design with simplified keyed joint, order length

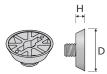

Design with indented joint, order length

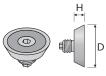
② B 500 NR stainless steel on request

Product Range, References for Length Calculation

HSC-SD Double female bar

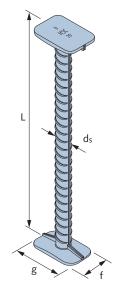
Material: Concrete steel B500B @

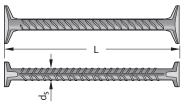

Article name type bar diam. d _s / L [mm]	L _{min} [mm]	Article No.			
HSC - SD - 12 /	205	0060.500 ①			
HSC - SD - 16 /	215	0060.510 ①			
HSC - SD - 20 /	230	0060.520 ①			
HSC - SD - 25 /	275	0060.530 ①			
① please state required length when ordering, see bottom of page					


Formwork accessories

Nailing plate, plastic Magnetic plate 3905

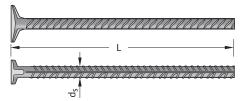
Nailing plate, metal 3916




Article name	For bar diam. d_S [mm]	D [mm]	H [mm]	Article No.
3905 - 12	12	60	10	0725.020-00002
3905 - 16	16	60	10	0725.020-00004
3905 - 20	20	60	10	0725.020-00005
3916 - 25	25	75	9	0725.030-00001
6365 - 12	12	40	12	0741.180-00001
6365 - 16	16	40	12	0741.180-00002
6365 - 20	20	55	12	0741 180-00003

Depending on performance and to find the required order length L the following has to be considered:

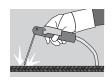
- column dimensions hcol
- corbel length l_c
- · concrete cover c acc. to structural analysis
- · thickness H of the nailing/magnetic plates
- thread length L₃ of HSC-A bars according to bar diameter
- · key joint depth ti
- · minimum constructional dimensions according to approval, see table on page 7-8.


HSC-HD Double headed bar

Material: Concrete steel B500B ②

Article name type bar diam. d _s / L [mm]	L _{min} [mm]	Article No.			
HSC - HD - 12 /	175	0060.200 ①			
HSC - HD - 16 /	175	0060.210 ①			
HSC - HD - 20 /	175	0060.220 ①			
HSC - HD - 25 /	180	0060.230 ①			
① please state required length when ordering					

HSC-H Single headed anchor bar



Material: Concrete steel B500B @

Article name type bar diam. d _s / L [mm]	Article No.			
HSC - H - 12 /	0060.100 ①			
HSC - H - 16 /	0060.110 ①			
HSC - H - 20 /	0060.120 ①			
HSC - H - 25 /	0060.130 ①			
① please state required length when ordering, see bottom of page				

Dimensions HSC anchor head						
HSC - Typ		12	16	20	25	
bar diameter Ø _{ds}	[mm]	12	16	20	25	
anchor head width f	[mm]	30	35	44	55	
anchor head length g	[mm]	35	53	66	83	
contact-surface under-head A _{Kn}	[mm ²]	906	1599	2504	3940	

② B 500 NR stainless steel on request

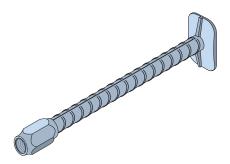
Flash butt welding in accordance with EN ISO 17660-1 is mandatory for factory-welded butt-joints on HSC anchors when welding special lengths and designs. The EN ISO 17660-1 guide-

lines are generally only valid for predominantly static loads. For fatigue susceptible building elements a distinct decrease in fatigue strength of the B500B reinforcement should be taken into account.

Please contact HALFEN Technical Support if you require technical assistance for your individual projects.

HSC Stud Connector

Text for invitation to tender

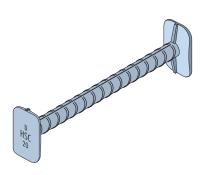

HALFEN HSC Stud Connector type HSC-S-16/L

HALFEN HSC Stud Connector type HSC-S reinforcement bar with sleeve and with unilateral forged anchor heads, for connection and anchorage of reinforcement steel bars, with National Technical Approval, for predominantly and non-predominantly static loads,

suitable as multilayer and staggered reinforcement, using rectangle shaped stud heads optimized for minimum bar spacing, short bond lengths and high degree of reinforcement, material B500B,

type HSC-S-16/L 16 = diameter [mm], L = length ... [mm],

or equivalent; deliver and install according to manufacturer's instructions.


HALFEN HSC Stud Connector type HSC-HD-20/L

HALFEN HSC Stud Connector type HSC-HD reinforcement bar with two forged anchor head, for connection and anchorage of reinforcement steel bars, with National Technical Approval, for predominantly and non-predominantly static loads,

suitable as multilayer and staggered reinforcement, using rectangle shaped stud heads optimized for minimum bar spacing, short bond lengths and high degree of reinforcement, material B500B,

type HSC-HD-20/L 20 = diameter [mm], L = length ... [mm],

or equivalent; deliver and install according to manufacturer's instructions.

Further tender texts are available at www.halfen.com

HSC Stud Connector

Orae	er torm							
	Enquiry	Ord	er		Organisation/facility			
(Please	e tick appropi	riate)			Address			
			orm to your local					
catal	ogue cover	. Trained eng	ail. Adresses are lis gineers are availab	le to help you	Contact person			
plan	with the H	ALFEN HSC	Stud Connector s	ystem.	Phone			
Constr	uction projec	ct			Fax			
					E-mail			
HSC-S single female	headed bar		HSC-A single headed male bar	HSC-SD double female	sleeve double		GC-H Igle headed bar	
	work access g plate, plasti	С	Magnetic plate	Nai H D □	ling plate, metal 5 mm h = 9 mm			
Pos.	No. [pcs.]	Туре	Bar diam. d _s [mm]	Length [mm]	Article no.	Price per unit [EUR]	Total price per pos. [EUR]	
(only if	ry address f different				packag	Amount ing and freight charges added	EUR	
from c	order address)				Date, signature			

HALFEN is represented by subsidiaries in the following 14 countries, please contact us:

Austria	HALFEN Gesellschaft m.b.H. Leonard-Bernstein-Str. 10 1220 Wien	Phone: +43-1-2596770 E-Mail: office@halfen.at Internet: www.halfen.at	Fax: +43-1-259-677099
Belgium / Luxembourg	HALFEN N.V. Borkelstraat 131 2900 Schoten	Phone: +32-3-6580720 E-Mail: info@halfen.be Internet: www.halfen.be	Fax: +32-3-658 15 33
China	HALFEN Construction Accessories Distribution Co.Ltd. Room 601 Tower D, Vantone Centre No. A6 Chao Yang Men Wai Street Chaoyang District Beijing · P.R. China 100020	Phone: +86-1059073200 E-Mail: info@halfen.cn Internet: www.halfen.cn	Fax: +86-1059073218
Czech Republic	HALFEN s.r.o. Business Center Šafránkova Šafránkova 1238/1 155 00 Praha 5	Phone: +420 -311-690060 E-Mail: info@halfen-deha.cz Internet: www.halfen-deha.cz	Fax: +420-235-314308
France	HALFEN S.A.S. 18, rue Goubet 75019 Paris	Phone: +33-1-44523100 E-Mail: halfen@halfen.fr Internet: www.halfen.fr	Fax: +33-1-44523152
Germany	HALFEN Vertriebsgesellschaft mbH Liebigstr. 14 40764 Langenfeld	Phone: +49-2173-970-0 E-Mail: info@halfen.de Internet: www.halfen.de	Fax: +49-2173-970225
Italy	HALFEN S.r.l. Soc. Unipersonale Via F.lli Bronzetti N° 28 24124 Bergamo	Phone: +39-035-0760711 E-Mail: tecnico@halfen.it Internet: www.halfen.it	Fax: +39-035-0760799
Netherlands	HALFEN b.v. Oostermaat 3 7623 CS Borne	Phone: +31-74-267 1449 E-Mail: info@halfen.nl Internet: www.halfen.nl	Fax: +31-74-267 2659
Norway	HALFEN AS Postboks 2080 4095 Stavanger	Phone: +47-51823400 E-Mail: post@halfen.no Internet: www.halfen.no	Fax: +47-51823401
Poland	HALFEN Sp. z o.o. Ul. Obornicka 287 60-691 Poznan	Phone: +48-61-622 14 14 E-Mail: info@halfen.pl Internet: www.halfen.pl	Fax: +48-61-622 14 15
Sweden	Halfen AB Vädursgatan 5 412 50 Göteborg	Phone: +46-31-985800 E-Mail: info@halfen.se Internet: www.halfen.se	Fax: +46-31-985801
Switzerland	HALFEN Swiss AG Hertistrasse 25 8304 Wallisellen	Phone: +41-44-8497878 E-Mail: info@halfen.ch Internet: www.halfen.ch	Fax: +41-44-8497879
United Kingdom / Ireland	HALFEN Ltd. A1/A2 Portland Close Houghton Regis LU5 5AW	Phone: +44 - 1582 - 47 03 00 E-Mail: info@halfen.co.uk Internet: www.halfen.co.uk	Fax: +44-1582-47 03 04
United States of America	HALFEN USA Inc. 8521 FM 1976 P.O. Box 547 Converse, TX 78109	Phone: +1800.423.9140 E-Mail: info@halfenusa.com Internet: www.halfenusa.com	Fax: +1 877.683.4910
For countries not listed HALFEN International	HALFEN International GmbH Liebigstr. 14 40764 Langenfeld/Germany	Phone: +49 -2173 -970-0 E-Mail: info@halfen.com Internet: www.halfen.com	Fax: +49 -2173 -970 -849

 $Furthermore\ HALFEN\ is\ represented\ with\ sales\ of fices\ and\ distributors\ worldwide.\ Please\ contact\ us:\ www.halfen.com$

NOTES REGARDING THIS CATALOGUE

Technical and design changes reserved. The information in this publication is based on state-of-the-art technology at the time of publication. We reserve the right to make technical and design changes at any time. HALFEN GmbH shall not accept liability for the accuracy of the information in this publication or for any printing errors.

The Quality Management System of Halfen GmbH is certified for the locations in Germany, France, the Netherlands, Austria, Poland, Switzerland and the Czech Republic according to **DIN EN ISO 9001:2015**, Certificate No. QS-281 HH.

